Anomaly Detection Using Principal Component Analysis

نویسنده

  • Sree Deepthi
چکیده

Anomaly detection is the identification of items, events or observations which do not conform to an expected pattern or other items in a dataset. Typically the anomalous items will translate to some kind of problem such as bank fraud, a structural defect, medical problems or finding errors in text. Anomalies are also referred to as outliers, novelties, noise, deviations and exceptions. Many techniques employed for detecting outliers are fundamentally identical but with different names chosen by the authors. In the most general case, an anomaly detector can detect deviations from an established baseline profile that characterizes normal behavior. Anomaly detection finds extensive use in a wide variety of applications such as fraud detection for credit cards, insurance or health care, intrusion detection for cyber-security, fault detection in safety critical systems, and military surveillance for enemy activities. The importance of anomaly detection is due to the fact that anomalies in data translate to significant actionable information in a wide variety of application domains. Principal Component Analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables. In this paper we discuss various anomaly detection techniques and their merits and demerits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs

Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

Robust Methods for Unsupervised PCA-based Anomaly Detection

The paper discusses the need for robust unsupervised anomaly detection. We focus on an approach that employs robust principal component analysis (PCA) to detect malicious behaviour. By using robust PCA, we can overcome the problem that we have to have enough anomaly–free data in the training phase of a detection system.

متن کامل

Statistical Techniques in Anomaly Intrusion Detection System

In this paper, we analyze an anomaly based intrusion detection system (IDS) for outlier detection in hardware profile using statistical techniques: Chi-square distribution, Gaussian mixture distribution and Principal component analysis. Anomaly detection based methods can detect new intrusions but they suffer from false alarms. Host based Intrusion Detection Systems (HIDSs) use anomaly detectio...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014